Периметр треугольника равен 50, одна из сторон равна 20,
а радиус вписанной в него окружности равен 4. Найдите площадь этого треугольника.
По третьему свойству вписанной окружности, радиус вписанной окружности равен:
r=S/p, где S - площадь треугольника, а p - полупериметр.
p=50/2=25
S=r*p=4*25=100
Ответ: 100
Поделитесь решением
Присоединяйтесь к нам...
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 6.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=28. Площадь треугольника ABC равна 162. Найдите площадь треугольника MBN.
Площадь равнобедренного треугольника равна 196√
Найдите тангенс угла С треугольника ABC, изображённого на рисунке.
Лестницу длиной 2 м прислонили к дереву.
На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на
1,2 м?
Комментарии:
(2024-04-15 22:12:16) : Периметр треугольника равен 18, одна из сторон равна 7, а радиус вписанной в него окружности равен 3. Найдите площадь этого треугольника.
(2024-04-15 22:10:49) амина: Периметр треугольника равен 18, одна из сторон равна 7, а радиус вписанной в него окружности равен 3. Найдите площадь этого треугольника.