Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135°, а CD=36.
Дочертим отрезки как показано на рисунке.
DE=AF, т.к. это
высоты
трапеции.
∠DCE=180°-∠BCD=180°-135°=45° (т.к. это
смежные углы).
sin(∠DCE)=ED/CD (по
определению)
sin45°=ED/CD (sin45°=√
√
ED=36√
sin(∠ABF)=AF/AB (по
определению)
sin60°=ED/AB
AB=ED/sin60° (sin60°=√
AB=(18√
Ответ: AB=12√
Поделитесь решением
Присоединяйтесь к нам...
Один из острых углов прямоугольного треугольника равен 57°. Найдите его другой острый угол. Ответ дайте в градусах.
Катеты прямоугольного треугольника равны 5√
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 3°?
Касательные к окружности с центром O в точках A и B пересекаются под углом 82°. Найдите угол ABO. Ответ дайте в градусах.
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=32, MD=8, H — точка пересечения высот треугольника ABC. Найдите AH.
Комментарии: