На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.
Площадь клетки равна 1, значит клетка имеет и единичные стороны, т.е. равные 1 (1*1=1).
Серединой отрезка BC будет будет точка, которая лежит посередине относительно вертикальной и горизонтальной осей.
То есть, относительно точки С на 2 клетки вправо и на пол клетки вниз.
Относительно точки В на две клетки влево и на пол клетки вверх.
Тогда очевидно, что расстояние от точки А до середины ВС равно 1,5
Ответ: расстояние от точки A до середины отрезка BC равно 1,5
Поделитесь решением
Присоединяйтесь к нам...
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=44, MN=24. Площадь треугольника ABC равна 121. Найдите площадь треугольника MBN.
В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 3°?
Найдите тангенс угла
AOB.
Комментарии: