Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 62°. Найдите величину угла OMK. Ответ дайте в градусах.
OK перпендикулярен к
касательной (по
свойству касательной), т.е. угол между OK и
касательной равен 90°.
Следовательно, /OKM=90°-62°=28°
Треугольник OMK -
равнобедренный (т.к. OM и OK - радиусы окружности и, соответственно, равны друг другу).
По
свойству равнобедренного треугольника /OKM=/OMK=28°
Ответ: /OMK=28°
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 50√
В треугольнике ABC угол C равен 90°, sinA=0,4, AC=√
Точка О – центр окружности, /BOC=110° (см. рисунок). Найдите величину угла BAC (в градусах).
В окружности с центром в точке О проведены диаметры AD и BC, угол
OCD равен 80°. Найдите величину угла OAB.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 11°?
Комментарии: