Юмор

Автор: Ольга
Пришел из школы ученик
И запер в ящик свой дневник.
-Где твой дневник? – спросил...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №18 из 923. Номер задачи на WWW.FIPI.RU - 051A2A


В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.

Решение задачи:

Рассмотрим треугольники ABC и ACD.
Сторона AC - общая для этих треугольников, AB=CD и BC=AD (по свойству параллелограмма), следовательно рассматриваемые треугольники равны (по третьему признаку). А значит равны и их площади, и равны эти площади половине площади параллелограмма.
Рассмотрим треугольник ACD, как только что выяснили, площадь этого треугольника равна половине площади параллелограмма. Отрезок DK - является медианой (по третьему свойству параллелограмма), и соответственно делит этот треугольник на два равновеликих треугольника, т.е. равных по площади ( свойство медианы).
Следовательно площадь AKD равна половине площади треугольника ACD. SAKD=SACD/2=SABCD/4.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


(2016-01-17 15:35:44) Маргарита: Спасибо огромное! Очень помогло)
(2015-05-24 18:28:57) Администратор: Антош, это свойство медианы.
(2015-05-24 18:12:51) Антош: А почему медиана делит на два равновеликих?
(2015-01-08 12:21:10) : cgfcb,j

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 923)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2017. Все права защищены. Яндекс.Метрика