Задача №18 из 42 |
Найдите корень уравнения log3(2x-5)=2.
log3(2x-5)=2
Так как 1=log33 (по
второму свойству логарифмов), то уравнение можно записать в виде:
log3(2x-5)=2log33
log3(2x-5)=log3(32) (по
шестому свойству).
log3(2x-5)=log39.
Применяем потенцирование:
2x-5=9
2x=14
x=7
Ответ: 7
Поделитесь решением
Присоединяйтесь к нам...
В корзине лежит 40 грибов: рыжики и грузди. Известно, что среди любых 17 грибов имеется хотя бы один рыжик, а среди любых 25 грибов хотя бы один груздь. Сколько рыжиков в корзине?
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| А) 2x≥2 | 1) x≥1 |
| Б) 0,5x≥2 | 2) x≤1 |
| В) 0,5x≤2 | 3) x≤-1 |
| Г) 2x≤2 | 4) x≥-1 |
Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок, делая первый прыжок из начала координат. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, совершив ровно 8 прыжков?
Список заданий викторины состоял из 33 вопросов. За каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 12 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 70 очков, если известно, что по крайней мере один раз он ошибся?
Каждому из четырёх неравенств в левом столбце соответствует одно
из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| A) 2-x+1<0,5 | 1) (4;+∞) |
| Б) (x-5)2/(x-4)<0 | 2) (2;4) |
| В) log4x>1 | 3) (2;+∞) |
| Г) (x-4)(x-2)<0 | 4) (-∞;4) |
Комментарии: