Задача №18 из 42 |
Найдите корень уравнения log3(2x-5)=2.
log3(2x-5)=2
Так как 1=log33 (по
второму свойству логарифмов), то уравнение можно записать в виде:
log3(2x-5)=2log33
log3(2x-5)=log3(32) (по
шестому свойству).
log3(2x-5)=log39.
Применяем потенцирование:
2x-5=9
2x=14
x=7
Ответ: 7
Поделитесь решением
Присоединяйтесь к нам...
Список заданий викторины состоял из 33 вопросов. За каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 12 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 70 очков, если известно, что по крайней мере один раз он ошибся?
На палке отмечены поперечные линии красного, жёлтого и зелёного цвета. Если распилить палку по красным линиям, получится 9 кусков, если по жёлтым — 12 кусков, а если по зелёным — 8 кусков. Сколько кусков получится, если распилить палку по линиям всех трёх цветов?
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| А) 2x≥2 | 1) x≥1 |
| Б) 0,5x≥2 | 2) x≤1 |
| В) 0,5x≤2 | 3) x≤-1 |
| Г) 2x≤2 | 4) x≥-1 |
Найдите корень уравнения -5+2x=-3x+6.
Решите уравнение x2+10x+21=0.
Если уравнение имеет более одного корня, в ответе укажите меньший из них.
Комментарии: