На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.
В правом столбце указаны значения производной функции в точках A, B, C
и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
ТОЧКИ | ЗНАЧЕНИЯ ПРОИЗВОДНОЙ |
А | 1) 0,5 |
B | 2) -0,7 |
C | 3) 4 |
D | 4) -3 |
Производную от функции, в данном случае, лучше рассматривать как тангенс угла наклона касательной.
Если тангенс положительный (т.е. угол острый), то и производная положительна и наоборот.
Тогда сразу можно сказать, что в точках B и C - значение производной положительно.
А в точках A и D - отрицательно.
Если посмотреть на таблицу углов, то ставится понятно, что при увеличени угла значение тангенса увеличивается (tg0°=0, tg45°=1, tg90°=+∞).
Следовательно, значение тангенса в точке B больше значения тангенса в точке C.
Получаем, что:
В точке B - значение производной равно 4.
В точке C - значение производной равно 0,5.
При дальнейшем увеличении угла (от 90° до 180°) значение тангенса меняется от -∞ до 0, т.е. уменьшается по модулю.
Следовательно, в точке A значение производной равно -3, а в точке D - значение производной равно -0,7.
Ответ:
A | B | C | D |
4) | 3) | 1) | 2) |
Поделитесь решением
Присоединяйтесь к нам...
На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч,
на горизонтальной — время в минутах, прошедшее с начала движения автобуса.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.
ИНТЕРВАЛЫ ВРЕМЕНИ | ХАРАКТЕРИСТИКИ |
А) 4-8 мин. | 1) автобус не увеличивал скорость на всём интервале |
Б) 8-12 мин. | 2) автобус ни разу не сбрасывал скорость |
В) 12-16 мин. | 3) была остановка длительностью 2 минуты |
Г) 16-20 мин. | 4) скорость не больше 40 км/ч на всём интервале, также была остановка длительностью ровно 1 минута |
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
ФУНКЦИИ
А)
Б)
В)
Г)
КОЭФФИЦИЕНТЫ
1) a<0, c<0
2) a<0, c>0
3) a>0, c>0
4) a>0, c<0
В таблице под каждой буквой укажите соответствующий номер.
На диаграмме показана среднемесячная температура воздуха
в Петрозаводске за каждый месяц 1976 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия.
Определите по диаграмме наименьшую среднемесячную температуру
во второй половине 1976 года. Ответ дайте в градусах Цельсия.
В соревнованиях по метанию молота участники показали следующие результаты:
Спортсмен | Результат попытки, м | |||||
I | II | III | IV | V | VI | |
Лаптев | 55,5 | 54,5 | 55 | 53,5 | 54 | 52 |
Монакин | 52,5 | 53 | 51,5 | 56 | 55,5 | 55 |
Таль | 53,5 | 54 | 54,5 | 54 | 54,5 | 52 |
Овсов | 52,5 | 52 | 52,5 | 51,5 | 53 | 52 |
На рисунке изображены график функции и касательные, проведённые к нему в точках с абсциссами A, B, C и D.
В правом столбце указаны значения производной функции в точках A, B, C
и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.
ТОЧКИ | ЗНАЧЕНИЯ ПРОИЗВОДНОЙ |
А | 1) 0,5 |
B | 2) -0,7 |
C | 3) 4 |
D | 4) -3 |
Комментарии: