Постройте график функции
и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Запишем Область Допустимых Значений (ОДЗ).
Так как на ноль делить нельзя, то 1-x≠0, т.е. x≠1
Упростим функцию:

График представляет из себя параболу. Коэффициент а=-1, т.е. меньше нуля, следовательно ветви параболы направлены вниз. Построим график по точкам:
| X | -2 | -1 | 0 | 1 |
| Y | -6,25 | -3,25 | -2,25 | -3,25 |
y=-x2-2,25Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции

Определите, при каких значениях k прямая y=kx не имеет с графиком общих точек.
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
На рисунке изображён график изменения атмосферного давления в городе Энске за три дня. По горизонтали указаны дни недели и время, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Укажите значение атмосферного давления во вторник в 18 часов.
Постройте график функции y=(x2+6,25)(x-1)/(1-x) и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции

Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии:
(2015-03-25 14:16:02) Администратор: Спасибо большое за найденную ошибку! Исправлено!
(2015-03-23 13:19:29) : У Вас "закралась" ошибка в нахождении третьего значения к, -3.25=к*1 к=-3.25 (выколота точка с координатами x=1)