ОГЭ, Математика. Числовые последовательности: Задача №E53FE9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №E53FE9

Задача №96 из 182
Условие задачи:

Выписаны первые несколько членов геометрической прогрессии: 1512; -252; 42; … Найдите сумму первых четырёх её членов.

Решение задачи:

В геометрической прогрессии зависимость членов прогрессии можно записать так: bn+1=bnq
Тогда:
b2=b1q
-252=1512q
q=-252/1512=-63/378=-7/42=-1/6
b4=b3q=42*(-1/6)=-7
Тогда сумму первых четырех членов геометрической прогрессии можно вычисли или по формуле или "в лоб":
1) "в лоб"
S4=1512+(-252)+42+(-7)=1295
2) по формуле

Ответ: 1295

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D3C8DE

В геометрической прогрессии сумма первого и второго членов равна 50, а сумма второго и третьего членов равна 200. Найдите первые три члена этой прогрессии.



Задача №492D85

Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.



Задача №0000DB

(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5, b1=250. Найдите сумму первых 6 её членов.



Задача №ABECC0

Дана арифметическая прогрессия (an), в которой a9=-15,7, a18=-22,9.
Найдите разность прогрессии.



Задача №244710

В геометрической прогрессии сумма первого и второго членов равна 48, а сумма второго и третьего членов равна 144. Найдите первые три члена этой прогрессии.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Формула суммы n-первых членов геометрической прогрессии.

,
где q≠1.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика