В геометрической прогрессии сумма первого и второго членов равна 48, а сумма второго и третьего членов равна 144. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=48
b1+b1q=48
b1(1+q)=48
2) b2+b3=144
b1q+b1q2=144
b1(q+q2)=144
b1(q+1)q=144
Подставляем из п. 1)
48q=144 => q=3, тогда b1(1+3)=48 => b1=12
b2=12*3=36
b3=12*32=108
Ответ: b1=12, b2=36, b3=108
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.
Выписаны первые несколько членов арифметической прогрессии: 6; 8; 10; … Найдите сумму первых шестидесяти её членов.
Геометрическая прогрессия (bn) задана условиями: b1=-1, bn+1=2bn. Найдите b7.
Геометрическая прогрессия (bn) задана условиями:
b1=-7, bn+1=3bn.
Найдите сумму первых пяти её членов.
Выписано несколько последовательных членов арифметической прогрессии: …; 1; x; -5; -8; … Найдите член прогрессии, обозначенный буквой x.
Комментарии: