Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 6 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 6 км/ч?
Обозначим:
S - расстояние от пристани до места рыбалки.
t1 - время движения лодки против течения.
t2 - время движения лодки по течению.
Скорость лодки против течения равна 6-3=3 км/ч, по течению - 6+3=9 км/ч.
Составим уравнения:
движение лодки против течения:
S=3t1
движение лодки по течению:
S=9t2
общее время поездки:
6=t1+t2+2
t1=4-t2
S=3(4-t2)
S=9t2
Вычтем из первого уравнения второе:
S-S=3(4-t2)-9t2
0=12-3t2-9t2
0=12-12t2
t2=1
Подставляем во второе уравнение:
S=9t2=9*1=9 км.
Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
Из А в В одновременно выехали два автомобилиста. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 33 км/ч, а вторую половину пути проехал со скоростью на 22 км/ч больше скорости первого, в результате чего прибыл в В одновременно с первым автомобилистом. Найдите скорость первого автомобилиста.
На каком рисунке изображено множество решений системы неравенств
-35+5x<0,
6-3x>-3?
1)
2)
3)
4)
Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 9 км/ч?
Решите уравнение (x+3)4+2(x+3)2-8=0.
Стоимость проезда в электричке составляет 131 рубль. Школьникам предоставляется скидка 50%. Сколько рублей будет стоить проезд для 3 взрослых и 5 школьников?
Комментарии: