Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 6 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 6 км/ч?
Обозначим:
S - расстояние от пристани до места рыбалки.
t1 - время движения лодки против течения.
t2 - время движения лодки по течению.
Скорость лодки против течения равна 6-3=3 км/ч, по течению - 6+3=9 км/ч.
Составим уравнения:
движение лодки против течения:
S=3t1
движение лодки по течению:
S=9t2
общее время поездки:
6=t1+t2+2
t1=4-t2
S=3(4-t2)
S=9t2
Вычтем из первого уравнения второе:
S-S=3(4-t2)-9t2
0=12-3t2-9t2
0=12-12t2
t2=1
Подставляем во второе уравнение:
S=9t2=9*1=9 км.
Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
Решите неравенство 3x-x2>0.
Игорь и Паша красят забор за 20 часов. Паша и Володя красят этот же забор за 24 часа, а Володя и Игорь — за 30 часов. За сколько минут мальчики покрасят забор, работая втроём?
Решите уравнение 3x2=9x.
Если уравнение имеет более одного корня, в ответ запишите меньший
из корней.
Решите систему неравенств
Городской бюджет составляет 76 млн рублей, а расходы на одну из его статей составили 20%. Сколько рублей потрачено на эту статью бюджета?
Комментарии: