Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.
Чтобы найти сумму первых 4 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=164*(1/2)1=82 (из условия задачи). А q=1/2.
Тогда S4=82*(1-(1/2)4)/(1-1/2)=82*(1-1/16)/(1/2)=82*(15/16)/(1/2)=82*15/16*2/1=82*15/8=153,75
Ответ: S4=153,75
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия задана условием bn=64,5(-2)n. Найдите b6.
Арифметическая прогрессия (an) задана условиями:
a1=43, an+1=an+5.
Найдите сумму первых семи её членов.
В первом ряду кинозала 22 места, а в каждом следующем на 2 больше, чем в предыдущем. Сколько мест в двенадцатом ряду?
Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.
Дана арифметическая прогрессия: -3; 1; 5; … . Найдите сумму первых шестидесяти её членов.
Комментарии: