ОГЭ, Математика. Числовые последовательности: Задача №81EE75 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы найти сумму первых 4 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=164*(1/2)1=82 (из условия задачи). А q=1/2.
Тогда S4=82*(1-(1/2)4)/(1-1/2)=82*(1-1/16)/(1/2)=82*(15/16)/(1/2)=82*15/16*2/1=82*15/8=153,75
Ответ: S4=153,75

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №323FCF

Геометрическая прогрессия задана условием bn=64,5(-2)n. Найдите b6.



Задача №1FEEDE

Арифметическая прогрессия (an) задана условиями:
a1=43, an+1=an+5.
Найдите сумму первых семи её членов.



Задача №4B425F

В первом ряду кинозала 22 места, а в каждом следующем на 2 больше, чем в предыдущем. Сколько мест в двенадцатом ряду?



Задача №C1B02D

Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.



Задача №037FCF

Дана арифметическая прогрессия: -3; 1; 5; … . Найдите сумму первых шестидесяти её членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Формула суммы n-первых членов геометрической прогрессии.

,
где q≠1.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика