В геометрической прогрессии сумма первого и второго членов равна 72, а сумма второго и третьего членов равна 144. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=72
b1+b1q=72
b1(1+q)=72
2) b2+b3=144
b1q+b1q2=144
b1(q+q2)=144
b1(q+1)q=144
Подставляем из п. 1)
72q=144 => q=2, тогда b1(1+2)=72 => b1=24
b2=24*2=48
b3=24*22=96
Ответ: b1=24, b2=48, b3=96
Поделитесь решением
Присоединяйтесь к нам...
Дана геометрическая прогрессия (bn), для которой b3=4/7, b6=-196. Найдите знаменатель прогрессии.
Выписаны первые несколько членов геометрической прогрессии: 184; -92; 46; ... Найдите её четвёртый член.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 78-й строке?
Дана арифметическая прогрессия: 6; 8; 10; … . Найдите сумму первых шестидесяти её членов.
Выписаны первые несколько членов арифметической прогрессии: 4; 7; 10; … Найдите сумму первых шестидесяти пяти её членов.
Комментарии: