Последовательность задана формулой an=40/(n+1). Сколько членов этой последовательности больше 2?
Для решения этой задачи надо решить неравенство:
40/(n+1)>2
40>2(n+1)
20>n+1
19>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 18. Таким образом получается, что при n=1, 2, 3,..., 18, an будет больше 2.
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов арифметической прогрессии:
…; -9; x; -13; -15; …
Найдите x.
Дана арифметическая прогрессия (an), в которой a10=-2,4, a25=-0,9.
Найдите разность прогрессии.
Геометрическая прогрессия (bn) задана условиями: b1=64, bn+1=bn*1/2. Найдите b7.
В первом ряду кинозала 22 места, а в каждом следующем на 2 больше, чем в предыдущем. Сколько мест в двенадцатом ряду?
Арифметическая прогрессия задана условием an=-0,6+8,6n. Найдите сумму первых 10 её членов.
Комментарии: