Последовательность задана формулой an=40/(n+1). Сколько членов этой последовательности больше 2?
Для решения этой задачи надо решить неравенство:
40/(n+1)>2
40>2(n+1)
20>n+1
19>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 18. Таким образом получается, что при n=1, 2, 3,..., 18, an будет больше 2.
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите её шестнадцатый член.
Выписаны первые несколько членов арифметической прогрессии: -7; -5; -3; … Найдите сумму первых пятидесяти её членов.
В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 120. Найдите первые три члена этой прогрессии.
Выписано несколько последовательных членов арифметической прогрессии: …; 1; x; -5; -8; … Найдите член прогрессии, обозначенный буквой x.
В геометрической прогрессии сумма первого и второго членов равна 50, а сумма второго и третьего членов равна 200. Найдите первые три члена этой прогрессии.
Комментарии: