ОГЭ, Математика. Числовые последовательности: Задача №7FADDE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы найти сумму арифметической прогрессии у нас есть две формулы.
a60 мы не знаем, поэтому воспользуемся второй формулой. Для этого найдем d - разность прогрессии.
d=a2-a1=-4-(-7)=3.
Подставляем все в формулу:
S60=60*(2*(-7)+(60-1)*3)/2=60*(-14+177)/2=30*163=4890
Ответ: S60=4890

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B43CD8

Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 117-й строке?



Задача №A4F005

Последовательность задана формулой an=70/(n+1). Сколько членов этой последовательности больше 6?



Задача №7B9ECC

Выписаны первые несколько членов геометрической прогрессии: -1024; -256; -64; … Найдите сумму первых пяти её членов.



Задача №00A508

Геометрическая прогрессия задана условием bn=88*2n. Найдите сумму первых её 4 членов.



Задача №F8FDC5

(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5 , b1=375. Найдите сумму первых 5 её членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика