ЕГЭ, Математика (базовый уровень). Геометрия: Задача №8BF84A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ЕГЭ, Математика (базовый уровень).
Геометрия: Задача №8BF84A

Задача №41 из 46
Условие задачи:

В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2 высоты. Объём сосуда 1600 мл. Чему равен объём налитой жидкости? Ответ дайте в миллилитрах.

Решение задачи:

Рассмотрим треугольники, которые образуют:
1) R-радиус основания сосуда, H-высота сосуда и боковая сторона сосуда
2) r-радиус конуса, образованный жидкостью, h-высота этого же конуса и боковая сторона этого конуса
Нижний угол этих треугольников общий.
Углы, образованные радиусами и высотами, прямые.
Следовательно, по первому признаку подобия треугольников эти треугольники подобны.
Тогда, мы можем записать:
H/h=R/r
Из условия нам известно, что h=H/2, следовательно r=R/2.
Так как сосуд имеет вид конуса, то его объем мы можем записать так:

Соответственно, объем жидкости, которая тоже имеет форму конуса, мы запишем так:

Подставляем значения r и h, выраженные через R и H.

Заметим, все весь результат, кроме 1/8, это объем сосуда, т.е. можем записать:

Ответ: 200

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4F7241

В треугольнике ABC известно, что AB=BC=15, AC=24. Найдите длину медианы BM.



Задача №F6524F

В окружности с центром O отрезки AC и BD — диаметры. Вписанный угол ACB равен 36°. Найдите угол AOD. Ответ дайте в градусах.



Задача №54764A

От деревянной правильной треугольной призмы отпилили все её вершины (см. рис.). Сколько вершин у получившегося многогранника (невидимые рёбра на рисунке не изображены)?



Задача №4F7241

В треугольнике ABC известно, что AB=BC=15, AC=24. Найдите длину медианы BM.



Задача №4E4948

На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что треугольник ABE равнобедренный. Найдите ED.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Признаки подобия треугольников:
1) Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

2) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

a/d=c/f
3) Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

a/d=c/f=b/e
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика