В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2 высоты. Объём сосуда 1600 мл. Чему равен объём налитой жидкости? Ответ дайте в миллилитрах.
Рассмотрим треугольники, которые образуют:
1) R-радиус основания сосуда, H-высота сосуда и боковая сторона сосуда
2) r-радиус конуса, образованный жидкостью, h-высота этого же конуса и боковая сторона этого конуса
Нижний угол этих треугольников общий.
Углы, образованные радиусами и высотами, прямые.
Следовательно, по первому признаку подобия треугольников эти треугольники
подобны.
Тогда, мы можем записать:
H/h=R/r
Из условия нам известно, что h=H/2, следовательно r=R/2.
Так как сосуд имеет вид конуса, то его объем мы можем записать так:
Соответственно, объем жидкости, которая тоже имеет форму конуса, мы запишем так:
Подставляем значения r и h, выраженные через R и H.
Заметим, все весь результат, кроме 1/8, это объем сосуда, т.е. можем записать:
Ответ: 200
Поделитесь решением
Присоединяйтесь к нам...
Участок земли под строительство санатория имеет форму прямоугольника, стороны которого равны 1000 м и 500 м. Одна из больших сторон участка идёт вдоль моря, а три остальные стороны нужно оградить забором. Найдите длину этого забора. Ответ дайте
в метрах.
Даны две коробки, имеющие форму правильной четырёхугольной призмы, стоящей на основании. Первая коробка
в четыре с половиной раза ниже второй,
а вторая втрое уже первой. Во сколько раз объём первой коробки больше объёма второй?
Деталь имеет форму изображённого на рисунке многогранника (все двугранные углы прямые). Числа
на рисунке обозначают длины рёбер в сантиметрах. Найдите объём этой детали. Ответ дайте в кубических сантиметрах.
В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 124°. Найдите угол ACB. Ответ дайте в градусах.
На плане указано, что прямоугольная комната имеет площадь 15,7 кв. м. Точные измерения показали, что ширина комнаты равна 3,2 м, а длина 5 м.
На сколько квадратных метров площадь комнаты отличается от значения, указанного на плане?
Комментарии: