ЕГЭ, Математика (базовый уровень). Геометрия: Задача №4F7241 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Треугольник ABC - равнобедренный (по условию).
Тогда, по третьему свойству равнобедренного треугольника, BM является высотой.
Т.е. треугольник ABM - прямоугольный.
AM=AC/2=24/2=12 (так как BM - медиана).
По теореме Пифагора:
AB2=BM2+AM2
152=BM2+122
225=BM2+144
BM2=81
BM=9
Ответ: 9

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №3BF440

В треугольнике ABC угол B равен 120°. Медиана BM делит угол B пополам и равна 27. Найдите длину стороны AB.



Задача №EA9E47

В трапеции ABCD известно, что AB=CD, ∠BDA=40° и ∠BDC=30°. Найдите угол ABD. Ответ дайте в градусах.



Задача №F87A44

Два ребра прямоугольного параллелепипеда равны 8 и 5, а объём параллелепипеда равен 280. Найдите площадь поверхности этого параллелепипеда.



Задача №87AE44

На координатной прямой отмечены точки A, B, C и D.

Число m равно √2.
Установите соответствие между указанными точками и числами в правом столбце, которые им соответствуют.

ТОЧКИ ЧИСЛА
A 1) 2m-5
B 2) m3
C 3) m-1
D 4) -1/m
Впишите в приведённую в ответе таблицу под каждой буквой соответствующий числу номер.



Задача №822343

Два ребра прямоугольного параллелепипеда равны 8 и 2, а объём параллелепипеда равен 144. Найдите площадь поверхности этого параллелепипеда.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика