В равнобедренном треугольнике ABC основание AC равно 40, площадь треугольника равна 300. Найдите длину боковой стороны AB.
Проведем высоту к основанию треугольника.
Площадь треугольника:
S=(1/2)AC*h
300=(1/2)40*h
300=(40/2)*h
300=20h
h=15=BD
Так как h - высота, то треугольник ABD -
прямоугольный.
Тогда мы можем воспользоваться
теоремой Пифагора:
AB2=BD2+AD2
Но нам неизвестна AD.
По третьему свойству
равнобедренного треугольника,
высота является так же и
медианой, следовательно:
AD=AC/2=40/2=20
Подставляем значения в теорему Пифагора:
AB2=152+202
AB2=225+400=625
AB=√625=25
Ответ: 25
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренном треугольнике ABC боковая сторона AB=25, sinA=3/5. Найдите площадь треугольника ABC.
Объём конуса равен 25π, а его высота равна 3. Найдите радиус основания конуса.
Объём конуса равен 25π, а его высота равна 3. Найдите радиус основания конуса.
Даны два цилиндра. Радиус основания и высота первого равны соответственно 6 и 9, а второго — 9 и 2.
Во сколько раз объём первого цилиндра больше объёма второго?
Радиус основания цилиндра равен 15, а его образующая
равна 14. Сечение, параллельное оси цилиндра, удалено
от неё на расстояние, равное 12. Найдите площадь этого сечения.
Комментарии: