ОГЭ, Математика. Геометрия: Задача №FC110F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №FC110F

Задача №8 из 1084
Условие задачи:

В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.

Решение задачи:

Рассмотрим треугольники DAK и KBC. AK=KB, т.к. точка K - середина AB, KC=KD (из условия задачи), AD=BC (по свойству параллелограмма). Соответственно, треугольники DAK и KBC равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /DAK=/KBC.
AD||BC (по определению параллелограмма), рассмотрим сторону AB как секущую к этим параллельным сторонам. Тогда получается, что сумма углов DAK и KBC равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону AD как секущую к этим параллельным сторонам.
/DAK и /ADC - внутренние односторонние. Следовательно их сумма равна 180°. А так как /DAK=90°, то /ADC тоже равен 90°.
Аналогично доказывается, что /BCD тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №093D2B

Основания трапеции равны 5 и 40, одна из боковых сторон равна 14, а косинус угла между ней и одним из оснований равен 3/5. Найдите площадь трапеции.



Задача №9AB52E

Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.



Задача №A44A54

Радиус окружности, вписанной в равносторонний треугольник, равен 12. Найдите высоту этого треугольника.



Задача №ADA70A

Точка О – центр окружности, /AOB=130° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №032494

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.

Комментарии:


(2016-10-09 00:43:15) Администратор: Константин, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-10-07 21:07:51) Константин: Известно, что f(x)=x^(3/2), g(x)=x^3 Докажите, что f(27x^3)=g^2(x) Докажите, что

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика