Точка О – центр окружности, /AOB=70° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию /AOB=70°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 70°. /ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле). Соответственно, 70/2=35.
Ответ: /ACB=35°.
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 18√
В треугольнике ABC угол C равен 90°, tgB=3/4, BC=12. Найдите AC.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.
В треугольнике ABC AC=15, BC=5√
Комментарии: