ОГЭ, Математика. Геометрия: Задача №90F613 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №90F613

Задача №68 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его высотой.
2) Диагонали прямоугольника равны.
3) У любой трапеции основания параллельны.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Каждая из биссектрис равнобедренного треугольника является его высотой", это утверждение неверно, т.к. по свойству равнобедренного треугольника, только биссектриса, проведенная к основанию является его высотой.
2) "Диагонали прямоугольника равны", это утверждение верно (по свойству прямоугольника).
3) "У любой трапеции основания параллельны", это утверждение верно (по определению трапеции).

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №6F2B66

В треугольнике АВС углы А и С равны 40° и 60° соответственно. Найдите угол между высотой ВН и биссектрисой BD.



Задача №0DA029

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.



Задача №0E2BF9

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 50°. Найдите меньший угол этого параллелограмма. Ответ дайте в градусах.



Задача №1BA510

Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=108°. Ответ дайте в градусах.



Задача №17EEFC

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=12, CM=18. Найдите AO.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика