В треугольнике ABC известно, что AB=3, BC=8, AC=7. Найдите cos∠ABC.
По
теореме косинусов:
AC2=AB2+BC2-2*AB*BC*cos∠ABC
72=32+82-2*3*8*cos∠ABC
49=9+64-48*cos∠ABC
49-9-64=-48*cos∠ABC
-24=-48*cos∠ABC |:(-24)
1=2*cos∠ABC
cos∠ABC=1/2=0,5
Ответ: 0,5
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
Основания трапеции равны 9 и 54, одна из боковых сторон равна 27, а косинус угла между ней и одним из оснований равен √
На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что
∠NBA=47°. Найдите угол NMB. Ответ дайте в градусах.
Найдите площадь трапеции, изображённой на рисунке.
В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 130°. Найдите вписанный угол ACB. Ответ дайте в градусах.
Комментарии: