Человек, рост которого равен 1,6 м, стоит на расстоянии 17 м от уличного фонаря. При этом длина тени человека равна 8 м. Определите высоту фонаря (в метрах).
Перерисуем данный рисунок в виде треугольников и обозначим интересующие нас точки.
Рассмотрим треугольники ABC и DCE, эти треугольники
подобны, т.к. /C - общий, /B и /DEC - прямые, а углы A и EDC - равны, так как являются
соответственними.
Из подобия этих треугольников следует, что AB/DE=BC/EC, отсюда AB=(BC*DE)/EC=((17+8)*1,6)/8=5.
Ответ: высота фонаря равна 5 м.
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
В треугольнике ABC AC=15, BC=5√
Точка О – центр окружности, /BAC=75° (см. рисунок). Найдите величину угла BOC (в градусах).
Один из углов ромба равен 114°. Найдите меньший угол этого ромба. Ответ дайте в градусах.
Площадь прямоугольного треугольника равна
722√
Комментарии: