В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.
Рассмотрим треугольники АЕМ и CKF.
АЕ = CK (по условию задачи)
/A=/C (по
свойству параллелограмма)
Т.к. AD=BC (по
свойству параллелограмма), а BF = DM (по условию), то АМ=CF.
Следовательно, треугольники АЕМ и CKF равны (по первому признаку).
Поэтому ЕМ=FK.
Аналогично доказывается, что треугольники EBF и KDM тоже равны, следовательно EF=MK.
Т.е. противоположные стороны данного четырехугольника равны. Соответственно этот четырехугольник - параллелограмм (по
свойству параллелограмма).
Поделитесь решением
Присоединяйтесь к нам...
Основания равнобедренной трапеции равны 16 и 96, боковая сторона равна 58. Найдите длину диагонали трапеции.
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 32°. Найдите угол C этой трапеции. Ответ дайте в градусах.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=2, AC=8. Найдите AK.
Площадь параллелограмма ABCD равна 6. Точка E – середина стороны AB. Найдите площадь трапеции EBCD.
Найдите площадь треугольника, изображённого на рисунке.
Комментарии:
(2015-06-08 11:28:24) Администратор: Света, прямоугольник - это тоже параллелограмм.
(2015-05-26 13:34:16) Света: Но ведь у прямоугольника противолежащие стороны тоже равны.
(2015-05-26 13:33:41) Света: Но ведь у прямоугольника противолежащие стороны тоже равны.
(2015-05-23 20:47:28) Администратор: Малина, а то, что противоположные стороны взаимно равны - доказывает.
(2015-05-23 20:41:29) Малина: То, что треугольники равны, не доказывает, что EFKM параллелограмм