ОГЭ, Математика. Геометрия: Задача №1B3298 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1B3298

Задача №42 из 1087
Условие задачи:

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.

Решение задачи:

Рассмотрим треугольники АЕМ и CKF.
АЕ = CK (по условию задачи)
/A=/C (по свойству параллелограмма)
Т.к. AD=BC (по свойству параллелограмма), а BF = DM (по условию), то АМ=CF.
Следовательно, треугольники АЕМ и CKF равны (по первому признаку).
Поэтому ЕМ=FK.
Аналогично доказывается, что треугольники EBF и KDM тоже равны, следовательно EF=MK.
Т.е. противоположные стороны данного четырехугольника равны. Соответственно этот четырехугольник - параллелограмм (по свойству параллелограмма).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №6AB9FA

В прямоугольном треугольнике катет и гипотенуза равны 16 и 20 соответственно. Найдите другой катет этого треугольника.



Задача №6E857B

Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.



Задача №07378B

В равнобедренной трапеции известны высота, меньшее основание и угол при основании. Найдите большее основание.



Задача №116AB8

Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 28, сторона BC равна 19, сторона AC равна 34. Найдите MN.



Задача №0BB6AA

Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.

Комментарии:


(2015-06-08 11:28:24) Администратор: Света, прямоугольник - это тоже параллелограмм.
(2015-05-26 13:34:16) Света: Но ведь у прямоугольника противолежащие стороны тоже равны.
(2015-05-26 13:33:41) Света: Но ведь у прямоугольника противолежащие стороны тоже равны.
(2015-05-23 20:47:28) Администратор: Малина, а то, что противоположные стороны взаимно равны - доказывает.
(2015-05-23 20:41:29) Малина: То, что треугольники равны, не доказывает, что EFKM параллелограмм

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика