Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.
Проведем отрезок АО, данный отрезок равен 8 (по условию задачи). Обозначим одну из точек касания окружности и касательной как Р. Проведем отрезок ОР. ОР является перпендикуляром к касательной АР (по свойству касательной).
Рассмотрим треугольник АОР. Данный треугольник является прямоугольным,т.к. ОР перпендикулярен АР. АО является биссектрисой угла, образованного касательными (свойство касательных прямых). Соответственно угол РАО равен половине данного угла, т.е. 30°. Синус угла PAO равен 1/2 (табличное значение) и равен отношению ОР к АО (по определению синуса). Соответственно, ОР равняется половине АО, т.е. 4. ОР - это и есть радиус окружности.
Ответ: R=4.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.
Окружности радиусов 44 и 77 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.
Прямая, параллельная стороне
AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=3:7, KM=12.
В треугольнике ABC угол C равен 120°, AB=22√3. Найдите радиус окружности, описанной около этого треугольника.
Комментарии: