ОГЭ, Математика. Геометрия: Задача №BDF518 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №BDF518

Задача №500 из 1087
Условие задачи:

Окружности радиусов 44 и 77 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Решение задачи:

Решение предложил пользователь Александр Круть
Рассмотрим трапецию ACO1O2
Данная трапеция прямоугольная, т.к. радиусы перпендикулярны касательной AC (по свойству касательной).
Проведем O2K параллельно AC, O2K=AC, т.к. ACKO2 - прямоугольник. По теореме Пифагора:
(O1O2)2=(O2K)2+(KO1)2
(R+r)2=(O2K)2+(R-r)2
(77+44)2=(O2K)2+(77-44)2
14641=(O2K)2+1089
(O2K)2=13552
O2K=13552=16*121*7=4*117=447=AC
Проведем отрезок AM, перпендикулярный CD. AM равняется искомому EF, так как AMFE образует прямоугольник.
Рассмотрим треугольники ACM и O2KO1.
∠O2KO1=∠AMC=90°
∠KO2O1=CAM (так как стороны улов попарно параллельны).
Следовательно, данные треугольники подобны (по первому признаку).
Тогда:
AM/O2K=AC/O2O1
Напомним: AC мы нашли ранее, O2K=AC, O2O1=R+r.
AM/AC=AC/(R+r)
AM=AC*AC/(R+r)
AM=(447)2/(77+44)
AM=442*7/121
AM=13552/121=112
Ответ: 112

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1340D7

Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 40° соответственно.



Задача №203B94

Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=122° и ∠ACB=47°. Найдите угол DCB. Ответ дайте в градусах.



Задача №17EEFC

Точки M и N являются серединами сторон AB и BC треугольника ABC соответственно. Отрезки AN и CM пересекаются в точке O, AN=12, CM=18. Найдите AO.



Задача №56CD5D

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.



Задача №08CAB1

Какие из следующих утверждений верны?
1) Площадь треугольника меньше произведения двух его сторон.
2) Средняя линия трапеции равна сумме её оснований.
3) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

Комментарии:


(2017-04-24 01:47:07) Администратор: Александр, спасибо большое. Действительно, Ваше решение намного удобней и короче. Публикую его под Вашим именем.
(2017-04-20 07:07:40) Александр: Это еще не самое удобное решение. Вышлю почтой.
(2017-04-19 18:52:37) Администратор: Александр, я прислушался к Вашему совету и согласен с Вами. Я подобрал наиболее удобные для вычислений треугольники и переделал решение через подобие. Ответ сошелся с Вашим. Спасибо большое за подсказку.
(2017-04-18 22:26:29) Александр: К тому же использование тригономерических функций в дпнной задаче излишнее, можно просто через подобие треугольников. Будет проще.
(2017-04-18 15:26:52) Александр: Решение содержит ошибку. Правильный ответ 112.
(2016-09-27 13:01:37) Администратор: Ирина, спасибо большое, исправлено.
(2016-09-27 08:28:01) ирина: опечатка. Рассм. треуг.ОАО2 и ОСО1 (см. рис.1)
(2015-12-26 00:54:05) Галина: Спасибо!!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика