Дан правильный восьмиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный восьмиугольник.
Так как углы меньшего многоугольника располагаются на середине сторон, а сторон восемь, значит и углов будет восемь. Т.е. меньший многоугольник является восьмиугольником. Теперь докажем, что он правильный.
Рассмотрим треугольники ABC, CDE и EFG. AB=BC=CD=DE=EF=FG (по
определению правильного многоугольника).
/ABC=/CDE=/EFG (по
определению правильного многоугольника).
Следовательно, рассматриваемые треугольники равны (по
первому признаку равенства треугольников).
Это означает, что AC=CE=EG=GA.
Из равенства этих треугольников также следует, что все их острые углы тоже равны (/BAC=/BCA=/DCE=...и т.д.). Следовательно, /ACE=/CEG=...и так далее
В итоге, по
определению правильного многоугольника получается, меньший восьмиугольник - правильный.
Поделитесь решением
Присоединяйтесь к нам...
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.
Площадь параллелограмма
ABCD равна 56. Точка E — середина стороны
CD. Найдите площадь трапеции AECB.
Точка О – центр окружности, /BAC=20° (см. рисунок). Найдите величину угла BOC (в градусах).
Найдите величину угла DOK, если OK — биссектриса угла AOD, ∠DOB=52°. Ответ дайте в градусах.
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=71° и ∠OAB=39°. Найдите угол BCO. Ответ дайте в градусах.
Комментарии: