ОГЭ, Математика. Геометрия: Задача №083AB6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №083AB6

Задача №534 из 1087
Условие задачи:

Касательные к окружности с центром O в точках A и B пересекаются под углом 82°. Найдите угол ABO. Ответ дайте в градусах.

Решение задачи:

Проведем отрезок CO.
Рассмотрим треугольник ACO.
∠ACO=∠ACB/2=82°/2=41° (по второму свойству касательной).
∠CAO=90° (по первому свойству касательной)
По теореме о сумме углов треугольника:
180°=∠AOC+∠ACO+∠CAO
180°=∠AOC+41°+90°
∠AOC=49°
Рассмотрим треугольники ACO и BCO.
OC - общая сторона
AC=BC (по второму свойству касательной)
OA=OB (т.к. это радиусы)
Следовательно, по третьему признаку, данные треугольники равны.
Тогда и ∠AOC=∠BOC=49°
Рассмотрим треугольник AOB.
OA=OB (т.к. это радиусы)
Следовательно, треугольник AOB - равнобедренный.
Тогда ∠BAO=∠ABO (по свойству равнобедренного треугольника).
По теореме о сумме углов треугольника:
180°=∠AOB+∠OAB+∠ABO
180°=∠AOC+∠BOC+2∠ABO
180°=49°+49°+2∠ABO
82°=2∠ABO
∠ABO=41°
Ответ: 41

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №22CB44

В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.



Задача №8A498A

Найдите площадь трапеции, изображённой на рисунке.



Задача №BD42C5

Укажите номера верных утверждений.
1) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
2) Смежные углы равны.
3) Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой.



Задача №83CBAE

ABCDEFGHIJ – правильный десятиугольник. Найдите угол ADI. Ответ дайте в градусах.



Задача №F9DD7F

В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 30°. Найдите величину угла ODC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика