Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №22CB44

Задача №799 из 1084
Условие задачи:

В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.

Решение задачи:

Рассмотрим треугольники KLA и NMA. LA=MA, т.к. точка А - середина LM, AK=AN из условия задачи, LK=MN (по свойству параллелограмма). Соответственно, треугольники KLA и NMA равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что ∠KLA=∠NMA.
LK||MN (по определению параллелограмма), рассмотрим сторону LM как секущую к этим параллельным сторонам. Тогда получается, что сумма углов KLA и NMA равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Рассмотрим треугольник KAN, KA=NA (по условию задачи), соответственно, этот треугольник равнобедренный. Отсюда следует, что ∠AKN=∠ANK ( из свойства равнобедренного треугольника). Из ранее полученного равенства треугольников, следует, что ∠LKA=∠MNA. Получаем, что углы LKN и MNK равны.
В свою очередь они так же являются внутренними односторонними и их сумма равна 180°. Получается, что и эти углы равны 90° каждый.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №C3FD5A

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 13 и 7. Найдите площадь параллелограмма ABCD.

Задача №B91F47

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.

Задача №6A4C23

Площадь одной клетки равна 1. Найдите площадь фигуры, изображённой на рисунке.

Задача №22636E

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=28. Площадь треугольника ABC равна 162. Найдите площадь треугольника MBN.

Задача №B7AE64

Катеты прямоугольного треугольника равны 521 и 10. Найдите синус наименьшего угла этого треугольника.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика