Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен
60°. Найдите длину хорды АВ, если радиус окружности равен 8.
Рассмотрим треугольник АОВ.
АО=ОВ, т.к. это радиусы окружности.
Следовательно, треугольник АОВ - равнобедренный.
Это значит, что ∠ОВА = ∠ОАВ = 60° (по свойству равнобедренного треугольника). Заметим, что ∠АОВ тоже равен 60° (по теореме о сумме углов треугольника). 180°-60°-60°=60°.
Следовательно, треугольник АОВ - равносторонний (по свойству равностороннего треугольника).
Получается, что ОВ=ОА=АВ=8.
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=42. Найдите MN.
В треугольнике ABC угол C прямой, AC=8, cosA=0,4. Найдите AB.
Стороны AC, AB, BC треугольника ABC равны 3√
В трапецию, сумма длин боковых сторон которой равна 24, вписана окружность. Найдите длину средней линии трапеции.
Найдите площадь трапеции, изображённой на рисунке.
Комментарии: