Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен
60°. Найдите длину хорды АВ, если радиус окружности равен 8.
Рассмотрим треугольник АОВ.
АО=ОВ, т.к. это радиусы окружности.
Следовательно, треугольник АОВ - равнобедренный.
Это значит, что ∠ОВА = ∠ОАВ = 60° (по свойству равнобедренного треугольника). Заметим, что ∠АОВ тоже равен 60° (по теореме о сумме углов треугольника). 180°-60°-60°=60°.
Следовательно, треугольник АОВ - равносторонний (по свойству равностороннего треугольника).
Получается, что ОВ=ОА=АВ=8.
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь квадрата, описанного около окружности радиуса 32.
Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.
Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Точка K — середина стороны BC. Докажите, что AK — биссектриса
угла BAD.
В треугольнике со сторонами 16 и 2 проведены высоты к этим сторонам. Высота, проведённая к первой стороне, равна 1. Чему равна высота, проведённая ко второй стороне?
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
Комментарии: