К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=21, AO=75.
Проведем отрезок ОВ.
Отрезок OB - это радиус окружности и этот отрезок перпендикулярен AB (по
свойству
касательной).
Следовательно, треугольник AOB -
прямоугольный, тогда, по
теореме Пифагора:
AO2=AB2+OB2
752=212+OB2
5625=441+OB2
OB2=5184
OB=72=R
Ответ: 72
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /BAC=40° (см. рисунок). Найдите величину угла BOC (в градусах).
Найдите площадь трапеции, изображённой на рисунке.
Найдите площадь трапеции, изображённой на рисунке.
Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BOC.
Комментарии:
(2023-02-14 01:23:05) : Через концы А, В хорды окружности проведены касательные АС и ВС. Угол АСВ равен 130°. Найдите градусную величину меньшей дуги окружности, которая стягивается хордой АВ. В ответ запишите только число.