Сторона равностороннего треугольника равна 10√
По
определению равностороннего треугольника:
AB=BC=AC=10√
По
свойству равностороннего треугольника,
биссектриса является так же и
медианой, и
высотой.
Следовательно:
1) BD перпендикулярен AC (т.к. BD -
высота), т.е. треугольник ABD -
прямоугольный.
2) AD=AC/2.
По
теореме Пифагора:
AB2=BD2+AD2
AB2=BD2+(AC/2)2
(10√
100*3=BD2+(5√
300=BD2+25*3
300=BD2+75
BD2=225
BD=15
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен
45°. Найдите площадь трапеции.
В окружности с центром в точке О проведены диаметры AD и BC, угол
OAB равен 65°. Найдите величину угла OCD.
Отрезки AB и CD являются хордами окружности. Найдите расстояние от центра окружности до хорды CD, если AB=20, CD=48, а расстояние от центра окружности до хорды AB равно 24.
В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=4:1.Прямая AK пересекает сторону BC в точке P.Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Четырёхугольник ABCD со сторонами AB=25 и CD=16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠
AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Комментарии:
(2017-03-30 23:06:34) Администратор: Акиф, в решении есть ссылки на материалы, на которые я ссылаюсь в решении - это первое. Поясните, начиная с какой строки Вам непонятно...Я обязательно поясню.
(2017-03-29 22:54:04) Акиф: Можете по подробней объяснить ?