Сторона равностороннего треугольника равна 10√
По
определению равностороннего треугольника:
AB=BC=AC=10√
По
свойству равностороннего треугольника,
биссектриса является так же и
медианой, и
высотой.
Следовательно:
1) BD перпендикулярен AC (т.к. BD -
высота), т.е. треугольник ABD -
прямоугольный.
2) AD=AC/2.
По
теореме Пифагора:
AB2=BD2+AD2
AB2=BD2+(AC/2)2
(10√
100*3=BD2+(5√
300=BD2+25*3
300=BD2+75
BD2=225
BD=15
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 121°. Найдите угол C. Ответ дайте в градусах.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 40° и 35°. Найдите больший угол параллелограмма.
Найдите площадь треугольника, изображённого на рисунке.
Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.
Комментарии:
(2017-03-30 23:06:34) Администратор: Акиф, в решении есть ссылки на материалы, на которые я ссылаюсь в решении - это первое. Поясните, начиная с какой строки Вам непонятно...Я обязательно поясню.
(2017-03-29 22:54:04) Акиф: Можете по подробней объяснить ?