Две касающиеся внешним образом в точке K окружности, радиусы которых равны 45 и 46, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
Проведем несколько отрезков:
EH - радиус малой окружности. Он перпендикулярен AB (по
свойству касательной).
FG - радиус большой окружности. Он перпендикулярен AB (по
свойству касательной).
HG - отрезок, соединяющий центры окружностей и равный R+r, так как он проходит через точку К.
Рассмотрим треугольники AFG и AEH:
∠EAH - общий;
углы AEH и AFG - прямые.
Следовательно эти треугольники
подобны, тогда:
FG/EH=AG/AH
FG/EH=(AH+HG)/AH
46/45=(AH+R+r)/AH
46AH=45(AH+91)
46AH-45AH=4095
AH=4095
sin∠EAH=EH/AH=45/4095=1/91
AK=AH+r=4095+45=4140
AK перпендикулярен AB, т.к. это продолжение большого и малого радиусов, а AB -
касательная (
свойство касательной) и делит хорду AB пополам (по
свойству хорды).
Треугольник ABC -
равнобедренный, т.к. AK - и
медиана и
высота (
свойство равнобедренного треугольника).
Теперь уберем из рисунка все, что нас больше не интересует и резюмируем, что мы знаем:
AK=4140
sinα=1/91
Так как AK -
биссектриса, то центр описанной окружности находится на AK.
Найдем AB.
По
теореме Пифагора:
AB2=AK2+BK2
AB2=AK2+(AB*sinα)2
AB2-AB2*sin2α=
41402
AB2(1-1/912)=41402
AB2(912-1)=912*41402
AB2=912*41402/(912-1)
Рассмотрим треугольник AOB.
AO=OB, так как это радиусы окружности, следовательно данный треугольник
равнобедренный.
Проведем высоту ON, в
равнобедренном треугольнике она так же является и
медианой (по
свойству равнобедренного треугольника).
sinα=ON/AO=1/91 => ON=AO/91
По теореме
Пифагора:
AO2=ON2+AN2
AO2=AO2/912+(AB/2)2
AO2((912-1)/912)=912*41402/(912-1)
AO2=912*41402/(912-1)/((912-1)/912)=912*41402*912/(912-1)2
AO=912*4140/(912-1)
AO=8281*4140/8280=8281/2=4140,5
Ответ: Радиус описанной окружности равен 4140,5.
Поделитесь решением
Присоединяйтесь к нам...
Высота равностороннего треугольника равна 13√3. Найдите сторону этого треугольника.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 38°, 78° и 64°.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Проектор полностью освещает экран A высотой 100 см, расположенный на расстоянии 170 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 340 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
Комментарии:
(2014-05-29 15:26:21) Танюшка: Большое спасибо! Очень мудреная задача!