В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=4:1.Прямая AK пересекает сторону BC в точке P.Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
BM -
медиана треугольника АВС,
следовательно, она делит этот треугольник на два равных по площади треугольника (
свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM и проведем
высоту из вершины А.
Высота h так же является
высотой для треугольников ABK и AKM.
Значит их площади:
SABK=h*BK*1/2
SAKM=h*KM*1/2
Найдем отношение этих площадей:
SABK/SAKM=(h*BK*1/2)/(h*KM*1/2)
SABK/SAKM=BK/KM=4
Т.е.
SAKM=SABK/4
SABK+SAKM=SABM=SABC/2
SABK+SABK/4=SABC/2
SABK*5/4=SABC/2
SABK=(SABC/2)*4/5
SABK=2*SABC/5
SAKM=SABK/4=(2*SABC/5)/4=SABC/10
Проведем отрезок CK и рассмотрим треугольники AKM и CKM.
Проведем
высоту KF. Эта
высота является общей для обоих этих треугольников. Площади этих треугольников:
SAKM=KF*AM*1/2
SCKM=KF*CM*1/2
KF=CM (так как BM-
медиана), следовательно SAKM=SCKM=SABC/10
Тогда SCKB=SCMB-SCKM=SABC/2-SABC/10=5*SABC/10-SABC/10=4*SABC/10=2*SABC/5
Вернемся к первоначальному рисунку и проведем отрезок MR, параллельный AP.
Для треугольника APC MR -
средняя линия, так как проходит через середину AC и параллельна AP.
Следовательно, по
теореме о средней линии, PR=RC.
Рассмотрим треугольники MBR и KBP.
∠MBR - общий для обоих треугольников.
∠BKP=∠BMR, так как они
соответственные (для параллельных прямых KP и MR и секущей MB).
Значит, по
первому признаку, данные треугольники
подобны.
Следовательно:
BM/BK=BR/BP
(BK+KM)/BK=(BP+PR)/BP
1+KM/BK=1+PR/BP
KM/BK=PR/BP=1/4 (по условию задачи)
Проведем
высоту KD, как показано на рисунке.
KD - является
высотой для треугольников KBP и KCP.
SKBP=KD*BP*1/2
SKCP=KD*CP*1/2=KD*(PR+CR)*1/2=KD*(2PR)*1/2
Найдем отношение этих площадей:
SKBP/SKCP=(KD*BP*1/2)/(KD*(2PR)*1/2)
SKBP/SKCP=BP/(2PR)=(BP/PR)/2=(4/1)/2=2
SKBP=2*SKCP
SCKB=2*SABC/5=SKBP+SKCP=2*SKCP+SKCP=3*SKCP
2*SABC/5=3*SKCP
SKCP=2*SABC/15
SKPCM = SCKM+SKCP =
SABC/10+SABC*2/15 = SABC*3/30+SABC*4/30 = SABC*7/30
SABK/SKPCM=(SABC*2/5)/(SABC*7/30)
SABK/SKPCM=(2/5)/(7/30)=(2/5)*(30/7)=(2*30)/(5*7)=(2*6)/7=12/7
Ответ: 12/7
Поделитесь решением
Присоединяйтесь к нам...
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.
Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.
В треугольнике ABC угол C равен 133°. Найдите внешний угол при вершине C. Ответ дайте в градусах.
Какое из следующих утверждений верно?
1) Все углы ромба равны.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.
В параллелограмме KLMN точка B — середина стороны KN. Известно, что BL=BM. Докажите, что данный параллелограмм — прямоугольник.
Комментарии:
(2015-02-09 15:58:35) Администратор: Маша, рады, что наш сайт полезен!
(2015-02-09 15:09:31) маша: Спасибо, с вами легче учиться!!!