Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №D31B80

Задача №603 из 1055
Условие задачи:

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=4:1.Прямая AK пересекает сторону BC в точке P.Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Решение задачи:

BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM и проведем высоту из вершины А.
Высота h так же является высотой для треугольников ABK и AKM.
Значит их площади:
SABK=h*BK*1/2
SAKM=h*KM*1/2
Найдем отношение этих площадей:
SABK/SAKM=(h*BK*1/2)/(h*KM*1/2)
SABK/SAKM=BK/KM=4
Т.е. SAKM=SABK/4
SABK+SAKM=SABM=SABC/2
SABK+SABK/4=SABC/2
SABK*5/4=SABC/2
SABK=(SABC/2)*4/5
SABK=2*SABC/5
SAKM=SABK/4=(2*SABC/5)/4=SABC/10
Проведем отрезок CK и рассмотрим треугольники AKM и CKM.
Проведем высоту KF. Эта высота является общей для обоих этих треугольников. Площади этих треугольников:
SAKM=KF*AM*1/2
SCKM=KF*CM*1/2
KF=CM (так как BM- медиана), следовательно SAKM=SCKM=SABC/10
Тогда SCKB=SCMB-SCKM=SABC/2-SABC/10=5*SABC/10-SABC/10=4*SABC/10=2*SABC/5
Вернемся к первоначальному рисунку и проведем отрезок MR, параллельный AP.
Для треугольника APC MR - средняя линия, так как проходит через середину AC и параллельна AP.
Следовательно, по теореме о средней линии, PR=RC.
Рассмотрим треугольники MBR и KBP.
∠MBR - общий для обоих треугольников.
∠BKP=∠BMR, так как они соответственные (для параллельных прямых KP и MR и секущей MB).
Значит, по первому признаку, данные треугольники подобны.
Следовательно:
BM/BK=BR/BP
(BK+KM)/BK=(BP+PR)/BP
1+KM/BK=1+PR/BP
KM/BK=PR/BP=1/4 (по условию задачи)
Проведем высоту KD, как показано на рисунке.
KD - является высотой для треугольников KBP и KCP.
SKBP=KD*BP*1/2
SKCP=KD*CP*1/2=KD*(PR+CR)*1/2=KD*(2PR)*1/2
Найдем отношение этих площадей:
SKBP/SKCP=(KD*BP*1/2)/(KD*(2PR)*1/2)
SKBP/SKCP=BP/(2PR)=(BP/PR)/2=(4/1)/2=2
SKBP=2*SKCP
SCKB=2*SABC/5=SKBP+SKCP=2*SKCP+SKCP=3*SKCP
2*SABC/5=3*SKCP
SKCP=2*SABC/15
SKPCM = SCKM+SKCP = SABC/10+SABC*2/15 = SABC*3/30+SABC*4/30 = SABC*7/30
SABK/SKPCM=(SABC*2/5)/(SABC*7/30)
SABK/SKPCM=(2/5)/(7/30)=(2/5)*(30/7)=(2*30)/(5*7)=(2*6)/7=12/7
Ответ: 12/7

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №9D4558

Сторона ромба равна 38, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Задача №043D63

Лестница соединяет точки A и B. Высота каждой ступени равна 13 см, а длина – 84 см. Расстояние между точками A и B составляет 25,5 м. Найдите высоту, на которую поднимается лестница (в метрах).

Задача №8A7C04

Точка О – центр окружности, /BOC=100° (см. рисунок). Найдите величину угла BAC (в градусах).

Задача №FF61EE

В треугольнике ABC угол C прямой, AC=4, cosA=0,8. Найдите AB.

Задача №029772

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.

Комментарии:


(2015-02-09 15:58:35) Администратор: Маша, рады, что наш сайт полезен!
(2015-02-09 15:09:31) маша: Спасибо, с вами легче учиться!!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика