Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

Решение задачи:

Дочертим отрезки как показано на рисунке.
DE=AF, т.к. это высоты трапеции.
∠DCE=180°-∠BCD=180°-150°=30° (т.к. это смежные углы).
sin(∠DCE)=ED/CD (по определению)
sin30°=ED/CD (sin30°=1/2 по таблице)
1/2=ED/26
ED=26*1/2=13
sin(∠ABF)=AF/AB (по определению)
sin45°=ED/AB
AB=ED/sin45° (sin45°=√2/2 по таблице)

Ответ: 13√2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №19F9D1

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 28. Найдите стороны треугольника ABC.

Задача №20E710

Площадь параллелограмма ABCD равна 140. Точка E — середина стороны AB. Найдите площадь треугольника CBE.

Задача №EEE91E

В трапеции ABCD основания AD и BC равны соответственно 49 и 21, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.

Задача №DDFE48

Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1 равны.

Задача №0EE7ED

Стороны AC, AB, BC треугольника ABC равны 25, 13 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика