Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=6, AC=54. Найдите AK.
По
теореме о касательной и секущей:
AK2=AB*AC
AK2=6*54=324
AK=√324=18
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
Площадь круга равна 88. Найдите площадь сектора этого круга, центральный угол которого равен 45°.
В треугольнике ABC угол C прямой, BC=8, cosB=0,8. Найдите AB.
Косинус острого угла A треугольника ABC равен . Найдите sinA.
В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.
Площадь прямоугольного треугольника равна 800√
Комментарии: