Решите неравенство
Первое: это неравенство ни при каких х не будет равно нулю, так как чтобы дробь была равна нулю, числитель должен быть равен нулю, а у нас он равен 16.
Значит мы можем превратить это нестрогое неравенство в строгое, ничего при этом не теряя:
Второе: данная дробь будет меньше нуля, только когда знаменатель будет меньше нуля (так как числитель положительный). Причем знаменатель строго меньше нуля, так как он не может быть равен нулю (на ноль делить нельзя).
Получаем неравенство: x2-6x-7<0
Найдем корни квадратного уравнения x2-6x-7=0
D=(-6)2-4*1*(-7)=36+28=64
x1=(-(-6)+8)/(2*1)=(6+8)/2=14/2=7
x2=(-(-6)-8)/(2*1)=(6-8)/2=-2/2=-1
График этой квадратичной функции - парабола. Ветви параболы направлены вверх, т.к. коэффициент "а" равен 1 (т.е. больше нуля).
Нас интересуют диапазон, где эта функция меньше нуля, т.е. располагается под осью Х:
(-1;7)
Ответ: (-1;7)
Поделитесь решением
Присоединяйтесь к нам...
Городской бюджет составляет 16 млн рублей, а расходы на одну из его статей составили 45%. Сколько рублей потрачено на эту статью бюджета?
Решите неравенство:
14/(x2+2x-15)≤0
.
Первые 300 км автомобиль ехал со скоростью 60 км/ч, следующие 300 км — со скоростью 100 км/ч, а последние 300 км — со скоростью 75 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути.
Решите уравнение x3+7x2=4x+28.
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 51 минуту, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 251 км, скорость первого велосипедиста равна 10 км/ч, скорость второго — 20 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
Комментарии: