На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Функция убывает на промежутке [-1;+∞)
2) ƒ(x)>0 при x<-4 и при x>2
3) Наименьшее значение функции равно -9
Рассмотрим каждое утверждение:
1) Функция убывает на промежутке [-1;+∞).
Посмотрим по графику:
ƒ(-1)=-9
ƒ(0)=-8
ƒ(1)=-5
Т.е. ƒ(-1)<ƒ(0)<ƒ(1), следовательно на этом участке функция возрастает, следовательно, данное утверждение неверно.
2) ƒ(x)>0 при x<-4 и при x>2
По графику видно, что при x<-4 и при x>2 график располагается выше оси Х, следовательно, на данных участках ƒ(x)>0, т.е. данное утверждение верно.
3) Наименьшее значение функции равно -9.
Опять же по графику видно, что, действительно, Наименьшее значение функции равно -9 при x=-1, т.е. данное утверждение верно.
Ответ: 2) и 3)
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Функция возрастает на промежутке (-∞;-1]
2) Наибольшее значение функции равно 8
3) f(-4)≠f(2)
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наименьшую температуру воздуха 30 мая. Ответ дайте в градусах Цельсия.
Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Постройте график функции y=-2x+4|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Комментарии: