ОГЭ, Математика. Геометрия: Задача №279FA8 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №279FA8

Задача №25 из 1087
Условие задачи:

На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?

Решение задачи:

Рисунок,предложенный в задаче можно условно перерисовать в виде треугольников.
h1 - изначальная высота длинного плеча журавля.
h2 - конечная высота длинного плеча журавля.
h3 - изначальная высота короткого плеча журавля.
h4 - конечная высота короткого плеча журавля.
h3-h4=0,5 метра (по условию задачи).
Нам надо найти:
h1-h2=?.
Рассмотрим треугольники AOE и COG.
1) ∠AOE=∠COG, т.к. они вертикальные.
2) ∠AEO=∠CGO=90°
Следовательно, треугольники AOE и COG подобны (по первому признаку подобия). Отсюда следует, что h1/OA=h3/OC.
Треугольники BOF и DOI тоже подобны (аналогично предыдущим треугольникам).
Тогда:
h2/OB=h4/OD
OA=OB и OC=OD (так как длины плеч журавля не меняются), тогда:
h2/OA=h4/OC
Вычтем из первого равенства второе:
h1/OA-h2/OA=h3/OC-h4/OC.
(h1-h2)/OA=(h3-h4)/OC.
(h1-h2)/6=0,5/2.
h1-h2=6*0,5/2=1,5.
Ответ: 1,5.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D56817

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №E94AC6

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 12°?



Задача №201054

Найдите тангенс угла AOB, изображённого на рисунке.



Задача №1F36A0

На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что /EAB=45°. Найдите ED.



Задача №C08375

Найдите тангенс угла А треугольника ABC, изображённого на рисунке.

Комментарии:


(2015-05-21 21:34:00) Елена: Опускаем перпендикуляры из С на ВD и из А на ВD. Полученные треугольники подобны, т.к. проведённые перпендикуляры параллельны друг другу. Дальше составляем пропорцию и находим неизвестный перпендикуляр.
(2015-03-14 13:23:46) Николай: А ещё можно на глаз определить, по клеточкам))

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика