Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные
30° и 50° соответственно.
В треугольнике ABC угол /ABC=180°-/BAC-/BCA=180°-50°-30°=100° (по
теореме о сумме углов треугольника).
Любую
равнобедренную трапецию можно вписать в окружность (
свойство описанной окружности), следовательно, сумма противоположных углов трапеции равна 180° по
третьему свойству описанной окружности. Следовательно, /ABC+/ADC=180°
/ADC=180°-100°=80°.
Ответ: /ADC=80°.
Поделитесь решением
Присоединяйтесь к нам...
Какие из следующих утверждений верны?
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Диагонали ромба равны.
3) Тангенс любого острого угла меньше единицы.
В трапеции ABCD известно, что AB=CD, ∠BDA=38° и ∠BDC=32°. Найдите угол ABD. Ответ дайте в градусах.
Дан правильный восьмиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится квадрат.
В треугольнике ABC угол C равен 90°, sinB=5/17, AB=51. Найдите AC.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.
Комментарии: