Найдите угол АDС равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные
30° и 50° соответственно.
В треугольнике ABC угол /ABC=180°-/BAC-/BCA=180°-50°-30°=100° (по
теореме о сумме углов треугольника).
Любую
равнобедренную трапецию можно вписать в окружность (
свойство описанной окружности), следовательно, сумма противоположных углов трапеции равна 180° по
третьему свойству описанной окружности. Следовательно, /ABC+/ADC=180°
/ADC=180°-100°=80°.
Ответ: /ADC=80°.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC=ED. Докажите, что данный параллелограмм - прямоугольник.
Основания трапеции равны 2 и 6, а высота равна 3. Найдите среднюю линию этой трапеции.
В треугольнике ABC угол C прямой, BC=6, sinA=0,6. Найдите AB.
В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 16, а меньшее основание BC равно 4.
Лестницу длиной 2 м прислонили к дереву.
На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на
1,2 м?
Комментарии: