Точка О – центр окружности, /AOB=84° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию ∠AOB=84°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 84°.
∠ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Соответственно, 84/2=42.
Ответ: 42
Поделитесь решением
Присоединяйтесь к нам...
Имеются два сосуда, содержащие 12 кг и 8 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 65% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится во втором растворе?
Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника есть центр симметрии.
Комментарии: