Найдите тангенс угла AOB.
Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по
теореме Пифагора:
AO2=102+62
AO2=100+36=136
AO=√
AB2=82+22
AB2=64+4=68
AB=√
BO2=82+22
BO2=64+4=68
BO=√
По
теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
(√
68=136+68-2√
-136=-2√
68=√
68=2*2√
17=√
17=17√
1=√
cos∠AOB=1/√
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+(1/√
sin2∠AOB+1/2=1
sin2∠AOB=1-1/2
sin2∠AOB=1/2
sin∠AOB=1/√
tg∠AOB=sin∠AOB/cos∠AOB=(1/√
Ответ: 1
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, описанной около квадрата, равен 36√2. Найдите длину стороны этого квадрата.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.
Найдите площадь параллелограмма, изображённого на рисунке.
На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.
Комментарии: