ОГЭ, Математика. Геометрия: Задача №C0D640 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по теореме Пифагора:
AO2=102+62
AO2=100+36=136
AO=136
AB2=82+22
AB2=64+4=68
AB=68
BO2=82+22
BO2=64+4=68
BO=68
По теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
(68)2=(136)2+ (68)2-2*136*68*cos∠AOB
68=136+68-2136*68*cos∠AOB
-136=-2136*68*cos∠AOB
68=4*34*4*17*cos∠AOB
68=2*234*17*cos∠AOB
17=2*17*17*cos∠AOB
17=172*cos∠AOB
1=2*cos∠AOB
cos∠AOB=1/2
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+(1/2)2=1
sin2∠AOB+1/2=1
sin2∠AOB=1-1/2
sin2∠AOB=1/2
sin∠AOB=1/2
tg∠AOB=sin∠AOB/cos∠AOB=(1/2)/(1/2)=1
Ответ: 1


Вариант №2 Достроим чертеж до двух прямоугольных треугольников. Найдем тангенсы для обоих треугольников для их углов О.
1) Для синего треугольника: tgα=8/2=4
2) Для красного треугольника: tgβ=6/10=0,6
Есть тригонометрическая формула:
tg(α-β)=(tgα-tgβ)/(1+tgα*tgβ)
Вычисляем:
tg∠AOB=tg(α-β)=(4-0,6)/(1+4*0,6)=3,4/3,4=1
Ответ: 1

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №7BF1F3

Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=57°. Найдите величину угла BOC. Ответ дайте в градусах.



Задача №FE6AD0

Биссектрисы углов C и D параллелограмма ABCD пересекаются в точке K стороны AB. Докажите, что K — середина AB.



Задача №C2B171

Стороны AC, AB, BC треугольника ABC равны 25, 7 и 2 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №ED3921

Точка О – центр окружности, /BAC=20° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №AEA79E

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика