ОГЭ, Математика. Геометрия: Задача №4F3CD0 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4F3CD0

Задача №288 из 1084
Условие задачи:

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.

Решение задачи:

Радиус вписанной окружности можно вычислить по формуле R=(AC+CB-AB)/2. Для этого необходимо вычислить длины всех сторон данного треугольника.
Рассмотрим треугольник ABC.
По определению tgABC=AC/CB=2,4 => CB=AC/2,4.
По теореме Пифагора AB2=AC2+CB2
AB2=AC2+(AC/2,4)2
AB2=6,76*AC2/5,76
AB=2,6*AC/2,4=1,3*AC/1,2
Необходимо вычислить AC.
По теореме о сумме углов треугольника для треугольника ABC:
/CAB=180°-90°-/ABC
Для треугольника ACP:
/CAB=180°-90°-/ACP
Следовательно, /ABC=/ACP.
Рассмотрим треугольник ACP.
По определению tgACP=AP/CP=2,4 => AP=2,4*CP.
По теореме Пифагора AC2=CP2+AP2
AC2=CP2+(2,4*CP)2
AC2=6,76*CP2
AC=2,6*CP
CP=AC/2,6
r=(AP+CP-AC)/2
2*r=2,4*CP+CP-AC
2*r=3,4CP-AC
2*12=3,4*AC/2,6-AC
24=0,8*AC/2,6
30=AC/2,6
78=AC
Вычислив AC, мы можем вычислить AB и CP, указанные выше:
AB=1,3*AC/1,2=1,3*78/1,2=13*78/12=13*26/4=84,5
CB=AC/2,4=78/2,4=32,5
R=(AC+CB-AB)/2, тогда получаем:
R=(78+32,5-84,5)/2=13.
Ответ: R=13.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №14BDE8

Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AP=18, а сторона BC в 1,2 раза меньше стороны AB.



Задача №CA72D9

Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.



Задача №225CE3

В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=48 и CH=2. Найдите cosB.



Задача №061DDF

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=27, MD=18, H — точка пересечения высот треугольника ABC. Найдите AH.



Задача №D31B80

В треугольнике ABC на его медиане BM отмечена точка K так, что BK:KM=4:1.Прямая AK пересекает сторону BC в точке P.Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика