ОГЭ, Математика. Геометрия: Задача №4D5C0E | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4D5C0E

Задача №23 из 1084
Условие задачи:

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Решение задачи:

Проведем следующие отрезки (как показано на рисунке 2):
1) Из точки О2 к точке касания окружности и продолжения стороны ВС. (точка Р)
2) Из точки О1 к точке касания окружности и продолжения стороны ВС. (Точка К)
3) Из точки О1 к точке О2.
Заметим, что:
1) СМ=АС/2.
2) СР=СМ, по второму свойству касательной.
3) СМ=СК, по второму свойству касательной.
4) O1O2=R+r.
5) O2Р перпендикулярна BC, по первому свойству касательной.
6) O1К тоже перпендикулярна BC, по свойству касательной.
7) Из пунктов 2) и 3) следует, что СР=СК=СМ=АС/2. Тогда РК=АС/2+АС/2=АС.
Следовательно, O2Р || O1К (по свойству параллельных прямых). Отсюда следует, что О1О2РК - прямоугольная трапеция (по определению трапеции). Рассмотрим эту трапецию.
Проведем отрезок О2Е параллельный РК, а раз он параллелен РК, то в свою очередь перпендикулярен О1К и равен ему. Следовательно получившийся треугольник O1O2Е - прямоугольный.
Тогда, по теореме Пифагора, мы можем записать: (O1O2)2=(O2Е)2+(O1Е)2.
Подставим известные нам данные, полученные ранее:
(R+r)2=AC2+(R-r)2. Раскрываем скобки, получаем:
R2+2Rr+r2=AC2+R2-2Rr+r2
2Rr=AC2-2Rr
4Rr=AC2
r=(AC2)/4R
r=122/4*8
r=144/4*8, r=4,5
Ответ: радиус вписанной окружности равен 4,5.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F6FBB5

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №F5E39D

Какие из данных утверждений верны? Запишите их номера.
1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.
2) Треугольник со сторонами 1, 2, 4 существует.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.



Задача №B56899

Какие из данных утверждений верны? Запишите их номера.
1) У равнобедренного треугольника есть ось симметрии.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.



Задача №04E270

Сторона равностороннего треугольника равна 103. Найдите его биссектрису.



Задача №107445

Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

Комментарии:


(2016-09-01 13:14:52) Администратор: Александра, можно, рисунки добавлены.
(2016-08-22 15:56:46) Александра: А можно ли посмотреть рисунок к третьему свойству касатальной?
(2015-11-29 19:15:42) Администратор: Ксения, я не понял, а в чем разница между моим решением и Вашим?
(2015-11-24 00:13:26) Администратор: Ксения, я не понял, а в чем разница между моим решением и Вашим?
(2015-11-23 13:23:00) Ксения: А так правильно?: PC=CK=CM=6 Проведем О2Е - перпендикуляр к О1К. O2РКЕ-прямоугольник ,значит О2Е=РК=12 Тогда, по теореме Пифагора, мы можем записать: (O1O2)2=(O2Е)2+(O1Е)2.(R+r)2=144+(R-r)2. (R+r)2-(R-r)2=144. ((R+r)+(R-r))((R+r)-(R-r))=144 2R*2r=144 16 *2r=144 32r=144 r=4,5 .

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика