Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 40 и 85.
AB=85, AC=40
По
теореме Пифагора найдем второй катет:
AB2=AC2+BC2
852=402+BC2
BC2=7225-1600
BC2=5625
BC=75
Площадь любого треугольника равна половине произведения
высоты и стороны, к которой проведена
высота. В
прямоугольном треугольнике
высота совпадает с одним из катетов, получается, что площадь
прямоугольного треугольника равна половине произведения катетов.
SABC=(AC*BC)/2=(40*75)/2=1500
Ответ: 1500
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 40, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=3 и MB=12. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и BDA подобны.
На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что
/EAB=45°. Найдите ED.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.
Комментарии:
(2020-12-22 17:10:53) арсен: Найти неизвестный катет прямоугольного треугольника, если его гипотенуза равна 85 см, а один из катетов 13 см.