Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

Решение задачи:

Вариант №1 (Прислал пользователь Евгений)
Проведем отрезок AB.
Найдем каждую сторону треугольника ABO по теореме Пифагора:
AO2=82+62
AO2=64+36=100
AO=10
AB2=42+32
AB2=16+9=25
AB=5
BO2=102+52
BO2=100+25=125
BO=125=55
По теореме косинусов:
AB2=AO2+BO2-2AO*BO*cos∠AOB
52=102+(55)2-2*10*55*cos∠AOB
25=100+125-2*10*55*cos∠AOB
-200=-1005*cos∠AOB
cos∠AOB=2/5
По основной тригонометрической формуле:
sin2∠AOB+cos2∠AOB=1
sin2∠AOB+4/5=1
sin2∠AOB=1/5
sin∠AOB=1/5
tg∠AOB=sin∠AOB/cos∠AOB=(1/5)/(2/5)=1/2=0,5
Ответ: tg∠AOB=0,5


Вариант №2 Достроим чертеж до двух прямоугольных треугольников. Найдем тангенсы для обоих треугольников для их углов О.
1) Для синего треугольника: tgα=10/5=2
2) Для красного треугольника: tgβ=6/8=0,75
Есть тригонометрическая формула:
tg(α-β)=(tgα-tgβ)/(1+tgα*tgβ)
Вычисляем:
tg∠AOB=tg(α-β)= (2-0,75)/(1+2*0,75)=1,25/2,5=0,5
Ответ: tg∠AOB=0,5

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №029772

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.

Задача №973E15

В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 12, а меньшее основание BC равно 4.

Задача №7BE617

Четырёхугольник ABCD вписан в окружность. Угол ABC равен 70°, угол CAD равен 49°. Найдите угол ABD. Ответ дайте в градусах.

Задача №52A416

В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 80°. Найдите величину угла OAB.

Задача №054B6B

ABCDEFGH – правильный восьмиугольник. Найдите угол EFG. Ответ дайте в градусах.

Комментарии:


(2016-12-09 15:52:33) Администратор: Маргарита, для треугольника с красными сторонами, AO - это гипотенуза, так как лежит напротив прямого угла.
(2016-12-09 15:35:08) Маргарита: простите, забыла сообщить своё имя
(2016-12-09 15:33:20) : Поучилось какое-то недоразумение. Я написала: почему в варианте 1 AO^2 = 8^2 + 6^2 ведь AO -катет, а не гипотенуза? А в ответ мне пришло сообщение, что мой комментариий не отправлен, потому что он содержит ненормативную лексику.
(2016-12-09 00:00:00) Маргарита: Почему AO2=82+62? Ведь AO - катет, а не гипотенуза.
(2014-12-25 20:57:11) Администратор: Жанна, не во всех подобных задачах получается прямоугольный треугольник. К тому же, "дорисовать до прямоугольного треугольника" - это не точное решение, можно ошибиться. А решение не такое уж и сложное (длинное - да, но не сложное), 3 раза применяется теорема Пифагора и один раз теорема косинусов.
(2014-12-25 20:42:09) жанна: здесь легко дорисовать до прямоугольного треугольника, один катет в 2 раза больше другого
(2014-12-25 20:37:50) жанна: эти решения сложные для 9 класса
(2014-05-17 10:26:18) Администратор: Евгений, интересная мысль, мы прорешаем и выложим Ваш вариант решения. Спасибо за подсказку.
(2014-05-17 09:01:43) Евгений : можно найти косинус угла по теореме косинусов, потом найти синус и тангенс
(2014-05-12 09:19:35) Администратор: evg-bakin@yandex.ru, к сожалению, не всегда треугольник получается прямоугольным. Например, в задачах №405 и №472 треугольник очевидно не прямоугольный.
(2014-05-12 08:22:12) evg-bakin@yandex.ru: нужно построить треугольник, найти длины сторон, посмотреть будет ли этот треугольник прямоугольным. А он должен быть!
(2014-05-11 19:29:49) Администратор: Надя, да, я в курсе, но другого, строго математического решения найдено не было. Учитель математики одной школы предложил прикладывать угольник и дорисовывать до прямоугольного треугольника, но это возможно только, если разрешат пользоваться угольником на экзамене. И плюс может получиться не точно. Поэтому, думаю, что лучше запомнить эту формулу.
(2014-05-11 19:06:56) Надя: В 9 классе формула тангенса разности двух углов не изучается

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика