Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.
Рассмотрим треугольник ABO.
По
определению,
ромб это
параллелограмм с равными сторонами, следовательно, на
ромб распространяются все
свойства параллелограмма.
Тогда, диагонали
ромба точкой пересечения делятся пополам (по
третьему свойству параллелограмма), т.е. OB=68/2=34
Треугольник ABO -
прямоугольный, так как ОА - расстояние до стороны
ромба, т.е. образует прямой угол со стороной.
sin∠ABO=AO/BO=17/34=1/2 => ∠ABO=30° (
табличное значение).
Треугольники EBO и CBO равны (по
трем сторонам).
Следовательно, ∠EBO=∠CBO=30°
Таким образом, ∠EBC=30°*2=60°
По свойству параллелограмма, ∠EBC=∠EDC=60° и ∠BED=∠BCD
Сумма углов любого четырехугольника равна 360°, следовательно:
∠BED=∠BCD=(360°-(2*60°))=(360°-120°)/2=120°
Ответ: 60 и 120
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Сторона ромба равна 38, а один из углов этого ромба равен 150°. Найдите высоту этого ромба.
Медиана равностороннего треугольника равна 9√
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=34.
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=20, DK=15, BC=12. Найдите AD.
Комментарии: