Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.
Рассмотрим треугольник ABO.
По
определению,
ромб это
параллелограмм с равными сторонами, следовательно, на
ромб распространяются все
свойства параллелограмма.
Тогда, диагонали
ромба точкой пересечения делятся пополам (по
третьему свойству параллелограмма), т.е. OB=68/2=34
Треугольник ABO -
прямоугольный, так как ОА - расстояние до стороны
ромба, т.е. образует прямой угол со стороной.
sin∠ABO=AO/BO=17/34=1/2 => ∠ABO=30° (
табличное значение).
Треугольники EBO и CBO равны (по
трем сторонам).
Следовательно, ∠EBO=∠CBO=30°
Таким образом, ∠EBC=30°*2=60°
По свойству параллелограмма, ∠EBC=∠EDC=60° и ∠BED=∠BCD
Сумма углов любого четырехугольника равна 360°, следовательно:
∠BED=∠BCD=(360°-(2*60°))=(360°-120°)/2=120°
Ответ: 60 и 120
Поделитесь решением
Присоединяйтесь к нам...
Диагонали AC и BD прямоугольника ABCD пересекаются
в точке O, BO=37, AB=56. Найдите AC.
Длина хорды окружности равна 140, а расстояние от центра окружности до этой хорды равно 24. Найдите диаметр окружности.
Докажите, что медиана треугольника делит его на два треугольника, площади которых равны между собой.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.
В трапеции
ABCD AB=CD, /BDA=67° и /BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Комментарии: