Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №0247D6

Задача №1032 из 1084
Условие задачи:

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.

Решение задачи:

Рассмотрим треугольник ABO.
По определению, ромб это параллелограмм с равными сторонами, следовательно, на ромб распространяются все свойства параллелограмма.
Тогда, диагонали ромба точкой пересечения делятся пополам (по третьему свойству параллелограмма), т.е. OB=68/2=34
Треугольник ABO - прямоугольный, так как ОА - расстояние до стороны ромба, т.е. образует прямой угол со стороной.
sin∠ABO=AO/BO=17/34=1/2 => ∠ABO=30° ( табличное значение).
Треугольники EBO и CBO равны (по трем сторонам).
Следовательно, ∠EBO=∠CBO=30°
Таким образом, ∠EBC=30°*2=60°
По свойству параллелограмма, ∠EBC=∠EDC=60° и ∠BED=∠BCD
Сумма углов любого четырехугольника равна 360°, следовательно:
∠BED=∠BCD=(360°-(2*60°))=(360°-120°)/2=120°
Ответ: 60 и 120

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №9A05F7

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.

Задача №0ADBAB

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=5, а расстояние от точки K до стороны AB равно 5.

Задача №C7DB28

Какое наибольшее число коробок в форме прямоугольного параллелепипеда размером 30x50x90 (см) можно поместить в кузов машины размером 2,4x3x2,7 (м)?

Задача №01C52F

Лестница соединяет точки A и B и состоит из 40 ступеней. Высота каждой ступени равна 10,5 см, а длина – 36 см. Найдите расстояние между точками A и B (в метрах).

Задача №1BB912

В трапецию, сумма длин боковых сторон которой равна 18, вписана окружность. Найдите длину средней линии трапеции.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика