ОГЭ, Математика. Геометрия: Задача №0247D6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0247D6

Задача №1032 из 1087
Условие задачи:

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.

Решение задачи:

Рассмотрим треугольник ABO.
По определению, ромб это параллелограмм с равными сторонами, следовательно, на ромб распространяются все свойства параллелограмма.
Тогда, диагонали ромба точкой пересечения делятся пополам (по третьему свойству параллелограмма), т.е. OB=68/2=34
Треугольник ABO - прямоугольный, так как ОА - расстояние до стороны ромба, т.е. образует прямой угол со стороной.
sin∠ABO=AO/BO=17/34=1/2 => ∠ABO=30° ( табличное значение).
Треугольники EBO и CBO равны (по трем сторонам).
Следовательно, ∠EBO=∠CBO=30°
Таким образом, ∠EBC=30°*2=60°
По свойству параллелограмма, ∠EBC=∠EDC=60° и ∠BED=∠BCD
Сумма углов любого четырехугольника равна 360°, следовательно:
∠BED=∠BCD=(360°-(2*60°))=(360°-120°)/2=120°
Ответ: 60 и 120

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №90F613

Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его высотой.
2) Диагонали прямоугольника равны.
3) У любой трапеции основания параллельны.



Задача №96E95A

Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите длину стороны AC, если радиус описанной окружности треугольника ABC равен 7.



Задача №BF030F

Две касающиеся внешним образом в точке K окружности, радиусы которых равны 45 и 46, вписаны в угол с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.



Задача №4F1471

На стороне AC треугольника ABC отмечена точка D так, что AD=3, DC=7. Площадь треугольника ABC равна 20. Найдите площадь треугольника BCD.



Задача №061DDF

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=27, MD=18, H — точка пересечения высот треугольника ABC. Найдите AH.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика