Геометрическая прогрессия задана условиями: b1=64, bn+1=(1/2)bn. Найдите b7.
Вариант №1
По условию задачи
геометрическая прогрессии задана условием: bn+1=(1/2)bn,
следовательно
b2=b1/2, т.е. q=1/2.
b7=b1q7-1=b1q6
b7=64*(1/2)6=64*1/64=1
Ответ: 1
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые три члена геометрической прогрессии:
-1024; -256; -64; …
Найдите сумму первых пяти её членов.
Выписаны первые несколько членов геометрической прогрессии: 17; 68; 272; ... Найдите её четвёртый член.
(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5, b1=250. Найдите сумму первых 6 её членов.
Последовательность задана условиями a1=5, an+1=an+3. Найдите a10.
Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.
Комментарии: