ОГЭ, Математика. Геометрия: Задача №C2B171 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №C2B171

Задача №15 из 1084
Условие задачи:

Стороны AC, AB, BC треугольника ABC равны 25, 7 и 2 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.

Решение задачи:

По условию задачи /KAC>90°, т.е. это наибольший угол в треугольнике AKC следовательно, сторона KC, противолежащая этому углу тоже наибольшая (по теореме о соотношениях между сторонами и углами треугольника). Сторона AC равная 25 - наибольшая сторона исходного треугольника ABC (т.к. 2<7<25). Следовательно, угол ABC - наибольший угол треугольника ABC.
По условию задачи треугольник KAC подобен исходному треугольнику ABC. А значит углы этих треугольников соответственно равны (по определению подобных треугольников). Поэтому наибольшие углы двух рассматриваемых треугольников равны, т.е. /KAC=/ABC. /ACK не равен /ACB ( т.к. KC пересекает сторону AB в точке, отличной от B), поэтому /ACK = /BAC. Следовательно, /AKC=/ACB => cos(/AKC)=cos(/ACB).
Применяя теорему косинусов мы можем записать AB2=AC2+BC2-2*AC*BC*cos(/ACB).
(7)2=(25)2+22-2*25*2*cos(/ACB);
7=4*5+4-8*5*cos(/ACB);
7-24=-8*5*cos(/ACB);
17=8*5*cos(/ACB);
cos(/AKC)=cos(/ACB)=17/(8*5)
Ответ: cos(/AKC)=17/(8*5)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D1A609

На клетчатой бумаге отмечены точки A, B и C. Площадь одной клетки равна 1. Найдите расстояние от точки A до середины отрезка BC.



Задача №E5A864

Углы B и C треугольника ABC равны соответственно 66° и 84°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 15.



Задача №481278

В треугольнике ABC угол C равен 90°, cosB=5/6, AB=18. Найдите BC.



Задача №D6A1B2

В трапеции ABCD AD=8, BC=5, а её площадь равна 13. Найдите площадь треугольника ABC.



Задача №4FDF7C

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 39°. Найдите величину угла OMK. Ответ дайте в градусах.

Комментарии:


(2016-05-27 10:35:21) Катя: благодарю вас!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика