Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OKI. Ответ дайте в градусах.
HO=KO (т.к. это радиусы окружности)
HO=KO=HI=IK (по
определению ромба)
Проведем отрезок OI.
OI тоже радиус окружности, следовательно HO=KO=HI=IK=OI
Следовательно, треугольники HIO и KIO -
равносторонние, а все углы равностороннего треугольника равны 60° (по
свойству).
Следовательно, /OKI=60°
Ответ: 60
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=6, AC=54. Найдите AK.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 60° и 55°. Найдите меньший угол параллелограмма.
В треугольнике ABC DE – средняя линия. Площадь треугольника CDE равна 35. Найдите площадь треугольника ABC.
Сторона ромба равна 30, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Комментарии: